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Abstract. Parameter specification usually has significant in-

fluence on the performance of land surface models (LSMs).

However, estimating the parameters properly is a challeng-

ing task due to the following reasons: (1) LSMs usually

have too many adjustable parameters (20 to 100 or even

more), leading to the curse of dimensionality in the param-

eter input space; (2) LSMs usually have many output vari-

ables involving water/energy/carbon cycles, so that calibrat-

ing LSMs is actually a multi-objective optimization problem;

(3) Regional LSMs are expensive to run, while conventional

multi-objective optimization methods need a large number of

model runs (typically ∼ 105–106). It makes parameter opti-

mization computationally prohibitive. An uncertainty quan-

tification framework was developed to meet the aforemen-

tioned challenges, which include the following steps: (1) us-

ing parameter screening to reduce the number of adjustable

parameters, (2) using surrogate models to emulate the re-

sponses of dynamic models to the variation of adjustable pa-

rameters, (3) using an adaptive strategy to improve the effi-

ciency of surrogate modeling-based optimization; (4) using a

weighting function to transfer multi-objective optimization

to single-objective optimization. In this study, we demon-

strate the uncertainty quantification framework on a single

column application of a LSM – the Common Land Model

(CoLM), and evaluate the effectiveness and efficiency of the

proposed framework. The result indicate that this framework

can efficiently achieve optimal parameters in a more effective

way. Moreover, this result implies the possibility of calibrat-

ing other large complex dynamic models, such as regional-

scale LSMs, atmospheric models and climate models.

1 Introduction

Land surface models (LSMs), which offer land surface

boundary condition for atmospheric models and climate

models, are widely used in weather and climate forecast-

ing. They are also a tool for studying the impacts of climate

change and human activities on our environment. Parameters

of LSMs usually have significant influence on their simula-

tion and forecasting capability. It has been shown that tuning

even one or two parameters may significantly enhance the

simulation ability of a LSM (e.g., Henderson-Sellers et al.,

1996; Liang et al., 1998; Lohmann et al., 1998; Wood et al.,

1998). How to specify the parameters in a LSM properly,

however, remains a very challenging task because the LSM

parameters are usually not directly measurable at the scale of

model applications.

Automatic optimization approaches have been frequently

used in calibrating the parameters of hydrological models.

There is a plethora of optimization approaches available, in-

cluding single-objective optimization methods such as the

Shuffled Complex Evolution Metropolis, University of Ari-

zona (SCE-UA) (Duan et al., 1992, 1993, 1994), the Shuf-

fled Complex Evolution Metropolis, University of Arizona

(SCEM-UA) (Vrugt et al., 2003a), genetic algorithm (Wang,

1991) and multi-objective optimization methods such as the

Multiple-Objective Complex Optimization Method, Univer-

sity of Arizona (MOCOM-UA) (Boyle et al., 2000; Boyle,

2000; Gupta et al., 1998; Yapo et al., 1998) and the Multi-

Objective Shuffled Complex Evolution Metropolis, Univer-

sity of Arizona (MOSCEM-UA) (Vrugt et al., 2003b).

Compared to traditional hydrological models, the param-

eter calibration approach has not been practiced as much in
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LSM community, especially for large spatial-scale applica-

tions. The major obstacles to calibrating LSMs over a large

spatial scale are (1) there are too many parameters to cal-

ibrate, namely, the curse of dimensionality in parameters;

(2) dimensionality of the output space is too high (i.e., many

processes such as water/energy/carbon cycles are simulated

simultaneously); (3) conventional optimization methods, es-

pecially the multi-objective approach, need a large number

(∼ 105–106) of model runs; and the large complex dynamic

system models such LSMs are usually expensive to run (i.e.,

costing many CPU hours). There have been numerous at-

tempts to use multi-objective optimization to calibrate the

parameters of LSMs and significant improvement in LSM

performance measures as a result of optimization have been

reported (e.g., Bastidas et al., 1999; Gupta et al., 1999; Lep-

lastrier et al., 2002; Xia et al., 2002). However, the optimiza-

tion efforts in the past were usually limited to cases involv-

ing only point or limited spatial domain-scale applications

of LSMs (Liu et al., 2003, 2004, 2005). To take a multi-

objective optimization approach to the calibration of LSM

parameters for large-scale applications, the key is to reduce

the number of model runs to an appropriate level that we can

afford.

Surrogate-based optimization is one of the most com-

monly used approaches to optimizing large complex dynamic

models. Several books and literature reviews have described

the advances of surrogate-based optimization in recent years

(e.g., Jones, 2001; Ong et al., 2005; Jin, 2011; Koziel and

Leifsson, 2013; Wang et al., 2014). Surrogate-based opti-

mization has been applied to economics, robotics, chemistry,

physics, civil and environmental engineering, computational

fluid dynamics, aerospace designs, etc. (Gorissen, 2010). On

the development of surrogate-based optimization, Jones et

al. (1998) proposed EGO (effective global optimizer) for ex-

pensive models using design and analysis of computer ex-

periments (DACE) stochastic process model, namely, krig-

ing interpolation method, as surrogate model. Castelletti et

al. (2010) developed a multi-objective optimization method

for water quality management using radial basis function

(RBF), inverse distance weighted and n-dimensional linear

interpolator as surrogates. Loshchilov et al. (2010) investi-

gated the use of the ranked-based support vector machine

(SVM) and demonstrated that for surrogate-based optimiza-

tion capturing the relative value of the objective functions

is more important than reducing the absolute fitting error.

Pilát and Neruda (2013) developed a surrogate model selec-

tor for multi-objective surrogate-assisted optimization. In hy-

drology and water resources, Razavi et al. (2012) has sum-

marized recent applications, advantages and existing prob-

lems. Wang et al. (2014) evaluated the influence of ini-

tial sampling and adaptive sampling methods for surrogate-

assisted optimization of a simple hydrological model, the

Sacramento Soil Moisture Accounting (SAC-SMA) model.

Song et al. (2012) optimized the parameter of a distributed

hydrological model – distributed time-variant gain model’s

(DTVGM) – with an SCE-UA algorithm using the Multi-

variate Adaptive Regression Splines (MARS) method (Fried-

man, 1991) as surrogate.

In our recent works, we proposed a framework that can

potentially reduce the number of model runs needed for pa-

rameter calibration of large complex system models (Wang

et al., 2014). This framework involves the following steps:

(1) a parameter screening step using global sensitivity analy-

sis to identify the most sensitive parameters to be included in

the optimization; (2) surrogate modeling that can emulate the

response surface of the dynamic system model to the change

in parameter values; (3) an adaptive sampling strategy to im-

prove the efficiency of the surrogate model construction; and

(4) a multi-objective optimization step to optimize the most

sensitive parameters of the dynamic system model. In this

paper, we will illustrate this parametric uncertainty quantifi-

cation framework with the Common Land Model (CoLM),

a widely used, physically based LSM developed by Dai et

al. (2003, 2004) and Ji and Dai (2010). The work related to

parameter screening and surrogate modeling-based optimiza-

tion (adaptive surrogate model-based optimization strategy –

ASMO) method for single objective has already been pub-

lished (Li et al., 2013; Wang et al., 2014). This paper will

emphasize the analysis of different surrogate model construc-

tion methods and multi-objective optimization methods and

results.

This paper contains the following parts: Sect. 2 introduces

the basic information of CoLM, the study area and data set,

the adjustable parameters and the output variables to be an-

alyzed; Sect. 3 presents an inter-comparison of five surro-

gate modeling methods, and discusses how many model runs

would be sufficient to build a surrogate model for optimiza-

tion; Sect. 4 carries out single and multiple objective opti-

mization using an ASMO strategy; Sect. 5 provides the dis-

cussion and conclusions.

2 Experiment setup

2.1 Model and parameters

The Common Land Model proposed by Dai et al. (2003,

2004) and Ji and Dai (2010) is one of the most widely used

LSM in the world. It combines the advantages of the LSM

(Bonan, 1996), the biosphere–atmosphere transfer scheme

(BATS) (Dickinson et al., 1993) and the Institute of Atmo-

spheric Physics LSM (IAP94) (Dai and Zeng, 1997; Dai et

al., 1998). CoLM considers physical processes of energy and

water transmission in soil vegetation, snow cover and atmo-

sphere. It also implements glacier, lake, wetland and dynamic

vegetation processes. Similar to previous research presented

in Li et al. (2013), we select 40 adjustable parameters from

CoLM. The parameter names, physical meanings and value

ranges are shown in Table 1.
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Table 1. Adjustable parameters and their categories, meanings and ranges.

Num Para Units Category Physical meaning Feasible range

P1 dewmx canopy maximum dew ponding of leaf area [0.05, 0.15]

P2 hksati mm s−1 soil maximum hydraulic conductivity [0.001, 1]

P3 porsl – soil porosity [0.25, 0.75]

P4 phi0 mm soil minimum soil suction [50, 500]

P5 wtfact soil fraction of shallow groundwater area [0.15, 0.45]

P6 bsw – soil Clapp and Hornberger b parameter [2.5, 7.5]

P7 wimp soil water impermeable if porosity less than wimp [0.01, 0.1]

P8 zlnd m soil roughness length for soil surface [0.005, 0.015]

P9 pondmx mm soil maximum ponding depth for soil surface [5, 15]

P10 csoilc – soil drag coefficient for soil under canopy [0.002, 0.006]

P11 zsno m snow roughness length for snow [0.0012, 0.0036]

P12 capr soil tuning factor of soil surface temperature [0.17, 0.51]

P13 cnfac canopy Crank Nicholson factor [0.25, 0.5]

P14 slti canopy slope of low temperature inhibition function [0.1, 0.3]

P15 hlti canopy 1/2 point of low temperature inhibition function [278, 288]

P16 shti canopy slope of high temperature inhibition function [0.15, 0.45]

P17 sqrtdi m−0.5 canopy the inverse of square root of leaf dimension [2.5, 7.5]

P18 effcon mol CO2 mol−1 quanta canopy quantum efficiency of vegetation photosynthesis [0.035, 0.35]

P19 vmax25 mol CO2 m−2s canopy maximum carboxylation rate at 25◦ [10−6, 200−6]

P20 hhti canopy 1/2 point of high temperature inhibition function [305, 315]

P21 trda canopy temperature coefficient of conductance–photosynthesis model [0.65, 1.95]

P22 trdm canopy temperature coefficient of conductance–photosynthesis model [300, 350]

P23 trop canopy temperature coefficient of conductance–photosynthesis model [250, 300]

P24 gradm canopy slope of conductance–photosynthesis model [4, 9]

P25 binter canopy intercept of conductance–photosynthesis model [0.01, 0.04]

P26 extkn canopy coefficient of leaf nitrogen allocation [0.5, 0.75]

P27 chil canopy leaf angle distribution factor [−0.3, 0.1]

P28 ref(1,1) canopy Visible (VIS) reflectance of living leaf [0.07, 0.105]

P29 ref(1,2) canopy VIS reflectance of dead leaf [0.16, 0.36]

P30 ref(2,1) canopy near-infrared (NIR) reflectance of living leaf [0.35, 0.58]

P31 ref(2,2) canopy NIR reflectance of dead leaf [0.39, 0.58]

P32 tran(1,1) canopy VIS transmittance of living leaf [0.04, 0.08]

P33 tran(1,2) canopy VIS transmittance of dead leaf [0.1, 0.3]

P34 tran(2,1) canopy NIR transmittance of living leaf [0.1, 0.3]

P35 tran(2,2) canopy NIR transmittance of dead leaf [0.3, 0.5]

P36 z0m m canopy aerodynamic roughness length [0.05, 0.3]

P37 ssi snow irreducible water saturation of snow [0.03, 0.04]

P38 smpmax mm soil wilting point potential [−2.e5, −1.e5]

P39 smpmin mm soil restriction for min of soil potential [−1.e8, −9.e7]

P40 trsmx0 mm s−1 canopy maximum transpiration for vegetation [1.e-4, 1. e-2]

This study considers six output variables simulated by

CoLM: sensible heat, latent heat, upward long-wave radia-

tion, net radiation, soil temperature and soil moisture. The

normalized root mean squared error (NRMSE) is used as the

objective function in our analysis:

NRMSEi =

√
N∑
j=1

(
ysim
i,j − y

obs
i,j

)2

N∑
j=1

yobs
i,j

, (1)

where i is the index of output variables, j is the index of time

step, N is the total number of observations, ysim
i,j and yobs

i,j

are the simulated and observed values, respectively. Objec-

tive functions represent the performance of model simulation

and a smaller objective function means better performance.

2.2 Study area and data sets

The study area and associated data sets are from the Heihe

river basin, the same as in Li et al. (2013). The Heihe

river basin, which is located between 96◦42′–102◦00′ E and

37◦41′–42◦42′ N, is an inland river basin in the arid re-

gion of northwest China. The basin area is approximately

130 000 km2 and its altitude varies from sea level to 5500 m.

The Heihe river basin has a variety of land use types includ-

ing forest, grassland, farmland and glacier, among others,

making it an ideal research region for LSM simulation. In

this research we use the data from the A’rou observation sta-
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tion located at the upstream region of the Heihe river basin.

Its geographic coordinate is 100◦28′ E, 38◦03′ N, altitude is

3032.8 m above sea level and the land cover type is alpine

steppe.

The forcing data used include downward shortwave and

long-wave radiation, precipitation, air temperature, relative

humidity, air pressure and wind speed (Hu et al., 2003); the

observation data used to validate the simulation of CoLM

include: sensible heat, latent heat, upward long-wave radia-

tion, net radiation, soil temperature and soil moisture. The

soil temperature and moisture were measured at depth 10,

20, 40 and 80 cm. In CoLM, the soil is divided into 10 layers

and the simulated soil temperature and soil moisture are lin-

early interpolated to the measured depth. Currently, we have

2 years of observation data. The data from year 2008 was

used for spin-up and that of 2009 was used for parameter

screening, surrogate modeling and optimization. The simu-

lation time step is set to 30 min and the simulation outputs

are averaged to 3 h in order to compare with the observation

data.

3 Comparison of surrogate models

After the sensitive parameters are identified using global sen-

sitivity methods (see Li et al., 2013), the next step is to cal-

ibrate the sensitive parameters through multi-objective opti-

mization. Since the calibration of CoLM in real-world appli-

cations can be very expensive, we aim to establish a surro-

gate model to represent the response surface of the dynamic

CoLM. The surrogate model, also called response surface,

meta-model, statistical emulator, is a statistical model that

describes the response of output variable to the variation of

input variables. Because the surrogate model only consid-

ers the statistical relationship between input and output, it

is usually much cheaper to run than the original large com-

plex dynamic model (“original model” for short). Parameter

optimization usually needs thousands, or even up to millions

of model runs. It will be impossible to calibrate large com-

plex dynamic models if running the original dynamic model

is too time-consuming. If we can do parameter optimization

with a surrogate model instead of an original model, the time

of running the original model will be dramatically reduced,

making it possible to calibrate the large complex dynamic

models, such as LSMs, atmospheric models, or even global

climate models. However, optimization based on surrogate

models can be a challenging task because the response sur-

face might be very bumpy and has many local optima. Razavi

et al. (2012) gave a comprehensive review of the surrogate

modeling methods and applications in water resources, and

discussed the pitfalls of surrogate modeling as well.

In this research, we first compared five different surrogate

models: multivariate adaptive regression spline (MARS),

Gaussian process regression (GPR), Random Forest (RF),

support vector machine (SVM), and artificial neural network

Table 2. Screened parameters of CoLM in A’rou Station (Li et.al.,

2013).

Output variables (fluxes) Screened parameters

Sensible heat P2, P4, P6, P30, P34, P36

Latent heat P3, P4, P6, P18, P19, P23, P25, P36

Upward long-wave radiation P6, P17, P36

Net radiation P6, P17, P30, P34, P36

Soil temperature P3, P6, P36

Soil moisture P3, P6

(ANN). A brief introduction of these methods is provided in

the Appendix. To build a surrogate, we need to choose a sam-

pling method first. The sampling method used in this study

is the Latin hypercube (LH) Sampling (McKay et al., 1979).

The sample sizes are set to 50, 100, 200, 400, 800, 1200,

and 2000. The inter-comparison results are shown in Figs. 1

and 2, in which the x axis is the sample size, and y axis is the

NRMSE (i.e., the ratio of the root mean square error (RMSE)

of the simulation model and the surrogate model). Figure 1

shows the error of the training set, namely, the NRMSE be-

tween the outputs predicted by the surrogate model and the

outputs of the training samples, and Fig. 2 shows the NRMSE

of the testing set. Since every sample set of each size was in-

dependently generated, we use the 2000 points set to test 50,

100, 200, 400, 800 and 1200 points set, and use the 1200

one to test the 2000 one. For each output variable, we only

construct surrogate models for the most sensitive parameters

based on the screening results obtained by Li (2012) and Li

et al. (2013) (see Table 2).

As shown in Fig. 1, for some cases, such as upward long-

wave radiation, the fitting ability of the training set does

not change significantly with sample size, but for soil mois-

ture, larger sample size leads to better fitted surrogate mod-

els. Such phenomenon indicated that the specific features of

the response surfaces have significant influence on the fit-

ting ability, and good surrogate models must have the ability

to adapt to those features. As shown in Fig. 1, GPR has the

best fitting ability for almost every case except soil tempera-

ture. As described in Appendix 2, the hyper-parameters used

by GPR can be adaptively determined using the maximum

marginal likelihood method.

Figure 2 shows the NRMSE of the testing sets, indicating

the risk of over fitting. In Fig. 2 we can note more remarkable

findings: (1) the error of a surrogate model decreases as the

sample size increases. The marginal benefits of using addi-

tional samples become less or even negligible if the sample

size is larger than 400; (2) among the five different surrogate

models, GPR has the best performance, while ANN ranks

the second. Random Forest and MARS have lower accuracy.

For some output variables (e.g., sensible and latent heat), the

performance of SVM seems acceptable, while for other vari-

ables (e.g., soil temperature), SVM’s performance is not sat-

isfactory; (3) the convergence speeds for the six output vari-
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Figure 1. Inter-comparison of five surrogate modeling methods: error of training set.
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Figure 2. Inter-comparison of five surrogate modeling methods: error of testing set.

ables are different. For net radiation, soil temperature and soil

moisture, the fitting error decreases to nearly 0 if the sam-

pling points are more than 200; while for sensible heat, latent

heat and upward long-wave radiation, the marginal benefit of

adding more points is still significant beyond more than 200

sample points. Since the GPR method can consistently give

the best performance for all six output variables, we choose

GPR in the multi-objective optimization analysis presented

later.

4 Optimization

4.1 Single-objective optimization

Before we conduct multi-objective optimization, we first car-

ried out single-objective optimization for each output vari-

able using the GPR surrogate model. The SCE method (Duan

et al., 1992, 1993, 1994) is used to find the optima of the

surrogate models. In order to figure out how many sample

points are sufficient to construct a surrogate model for opti-

mization, different sample sizes (i.e., 50, 100, 200, 400, 800,

1200, and 2000) are experimented. To evaluate the optimiza-

tion results based on the surrogate model, we also set up two

control cases: (1) no optimization using the default param-

eters as specified in CoLM, and (2) optimization using the

original CoLM (i.e., no surrogate model is used). The second

case is referred to as “direct optimization”. The control cases

are used to confirm the following hypotheses: (1) parameter

optimization can indeed enhance the performance of CoLM;

(2) optimization using the surrogate model can achieve simi-

lar optimization results as using the original model, but with

fewer model runs.

The optimal parameters given by single-objective opti-

mization are shown in Fig. 3. In each subfigure the optimal

parameter values are normalized to (0, 1). The bold black line

is the optimal parameter set obtained by direct optimization
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Figure 3. Single-objective optimization result: optimal parameters.

using the original CoLM, and other lines are optimal param-

eters given by surrogate models created with different sam-

ple sizes. Table 3 summarizes the optimized NRMSE values

of all surrogate model-based optimization runs with differ-

ent sample sizes, as well as the control cases. The numbers

of original model runs that SCE takes are also listed in the

parentheses.

The optimization results reveal that (1) parameter opti-

mization can significantly improve the simulation ability of

CoLM for all output variables. (2) For sensible heat, upward

long-wave radiation, net radiation, soil moisture, the optimal

parameters obtained by surrogate model optimization runs

are very similar to those obtained by direct optimization. The

optimal parameters obtained for different sample sizes are

also close to each other. For latent heat and soil temperature,

however, the optimal parameters given by surrogate model

optimization and direct optimization are significantly differ-

ent. The discrepancy between the results with different sam-

ple sizes is also significant, comparing to the previous four

outputs. (3) Surprisingly, for four of the outputs, namely,

some variables (e.g., sensible heat, upward long-wave ra-

diation, net radiation and soil moisture), sample size does

not have significant influence on the optimization results. As

shown in Table 3, even a surrogate model constructed with

50 samples is similar to the one constructed with 2000 sam-

ples and with the direct optimization. For soil temperature,

200 samples are sufficient, and for latent heat, more than 400

samples are enough. Interestingly, the LH50’s optimization

result for sensible heat is even smaller than that of LH2000.

This is because LH sampling is random and the LH50 sam-

pling may have produced a sample point very close to the

global optimum, while the best sample point of the LH2000

sampling may be further away from the global optimum.

Consequently, the number of samples required for surrogate-

based optimization varies for different outputs because of the

randomness of sampling designs, and the complexity of re-

sponse surfaces. A more complex surface needs more sam-

ple points to build an effective surrogate model, compared to

a simple surface. Even so, this result is very encouraging in

that with the help of surrogate models we can possibly reduce

the number of model runs required by optimization down to

hundreds of times. (4) The number of original model runs

that SCE takes before convergence is also listed in Table 3.

The result indicated that SCE can get better, or similar op-

timal NRMSE, but the number of model runs is larger than

that using the surrogate model. If the original dynamic model

costs too much CPU time to run, surrogate-based optimiza-

tion can be more efficient than the SCE. (5) Different output

variables require different optimal parameters, indicating the

necessity of multi-objective optimization. For example, P6,

the Clapp and Hornberger “b” parameter, is sensitive to many

outputs. For sensible heat, latent heat and soil moisture, the

optimal value of P6 is high, while for upward long-wave ra-

diation, net radiation and soil temperature, the optimal value

of P6 is low. In order to balance the performance of all out-

put variables, it is necessary to choose a compromised value

for P6. Multi-objective optimization is an approach that can

provide such a compromised optimal parameter that balances

the requirements of many output variables.

4.2 Multi-objective optimization

The results of single-objective optimization from the previ-

ous section have highlighted the necessity for multi-objective

optimization. Many multi-objective optimization methods

have been proposed and validated in numerous studies (e.g.,

Boyle et al., 2000; Boyle, 2000; Gupta et al., 1998, 1999;

Yapo et al., 1998; Vrugt et al., 2003b; Bastidas et al., 1999;

Leplastrier et al., 2002; Pollacco et al., 2013; Xia et al.,

2002), but in the context of this research, we need a method

that can satisfy the following constrains: (1) the method

Hydrol. Earth Syst. Sci., 19, 2409–2425, 2015 www.hydrol-earth-syst-sci.net/19/2409/2015/
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Table 3. The NRMSE between simulated and observed outputs after single-objective optimization.

Upward

Sensible Latent long-wave Net Soil Soil

heat heat radiation radiation temperature moisture

Default 0.8586 0.5833 0.0590 0.2357 0.0096 0.4527

SCE 0.7450 0.4921 0.0380 0.1963 0.0073 0.3900

No. of model runs of SCE (1492) (1354) (458) (982) (473) (210)

LH50 0.7672 0.5255 0.0377 0.1913 0.0080 0.4222

LH100 0.7841 0.5785 0.0372 0.1908 0.0077 0.4130

LH200 0.7821 0.5885 0.0374 0.1928 0.0069 0.3947

LH400 0.7798 0.5627 0.0374 0.1928 0.0070 0.3971

LH800 0.7683 0.5024 0.0377 0.1909 0.0068 0.3956

LH1200 0.7760 0.5150 0.0374 0.1919 0.0068 0.3962

LH2000 0.7705 0.5048 0.0375 0.1912 0.0070 0.3946

should be compatible with surrogate model optimization;

(2) for practical reasons, it should provide a single best pa-

rameter set instead of a full Pareto optimum set with many

non-dominated parameter sets. The Pareto optimal set usu-

ally contains hundreds of points, but for large complex dy-

namic models such as regional or global LSMs, it is gener-

ally impractical, and also unnecessary to run the model in an

ensemble mode with hundreds of model runs. For regional

or global LSMs coupled with atmospheric models, providing

only one parameter set that has good simulation ability for

most outputs is a more economical and convenient choice.

In multi-objective optimization, there have been many

methods that can transform multiple objectives to single ob-

jective. Among them, the weighting function-based method

is the most intuitive and widely used one. In this paper, we

assign higher weights to the outputs with larger errors. In

the research of Liu et al. (2005), the RMSE of each outputs

were normalized by the RMSE of the default parameter set,

and each normalized RMSE was assigned equal weights. Van

Griensven and Meixner (2007) developed a weighting sys-

tem based on Bayesian statistics to define “high-probability

regions” that can give “good” results for multiple outputs.

However, both of Liu et al. (2005) and van Griensven and

Meixner (2007) tended to assign higher weights to the out-

puts with lower RMSE, and lower weights to the outputs

with higher RMSE. This tendency, although reasonable in

the probability meaning, conflicts with our intuitive motiva-

tions that we want to emphasis on the poorly simulated out-

puts with large RMSE. Jackson et al. (2003) assumed Gaus-

sian error in the data and model so that the outputs were in

a joint Gaussian distribution, and the multi-objective “cost

function” was defined on the joint Gaussian distribution of

multiple outputs. In Gupta et al. (1998), a multiple weighting

function method is proposed to fully describe the Pareto fron-

tier, if the frontier is convex and model simulation is cheap

enough. If one outputs is more important than others, a higher

weight should be assigned to it. Marler and Arora (2010)

reviewed the applications, conceptual significance and pit-

falls of weighting function-based optimal methods, and gave

some suggestions to avoid blind use of it.

In this study, we use three weighting functions to convert

the multi-objective optimization into a single-objective op-

timization. Case 1: assigning more weight if the output is

simulated more poorly as compared to the other outputs. The

summed up objectives should have the same unit, so we use

NRMSE as the objective function. The weighting function is

F =

n∑
i=1

wiNRMSEi, (2)

in which the NRMSEi is the normalized root mean squared

error of each output variable that is defined in Eq. (1), wi is

the weight of each output and
n∑
i=1

wi = 1. Table 4 shows the

RMSE and NRMSE of CoLM using default parameterization

scheme, and the weight of each output is proportional to the

NRMSE. Case 2: Liu et al. (2005) normalized the RMSE

of each output with the RMSE of simulation result given by

default parameters. The weighting function is

F =

n∑
i=1

wi
RMSEi

RMSEi,default

(3)

and assign equal weights to each normalized output. Case

3: van Griensven and Meixner (2007) defined the global

optimization criterion (GOC) based on Bayesian theory for

multi-objective optimization. If the number of observations

of each output are the same, the GOC is defined as

F =

n∑
i=1

SEi

SEi,min

, (4)

where SEi =
N∑
j=1

(
ysim
i,j − y

obs
i,j

)2

is the squared error, and

SEi,min is the squared error of optimal solution. SEi,min is

dynamically updated during the optimization procedure.
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Table 4. Weights assigned to each output variables (weighting system case 1).

Flux name Label Unit RMSE NRMSE Weights

Sensible heat fsena W m−2 49.14 0.8586 0.3905

Latent heat lfevpa W m−2 43.59 0.5833 0.2653

Upward long-wave radiation orlg W m−2 19.43 0.0590 0.0268

Net radiation sabvg W m−2 42.78 0.2357 0.1072

Soil temperature tss K 2.66 0.0096 0.0044

Soil moisture wliq kg m−2 21.14 0.4527 0.2059

In order to use the information offered by the surrogate

model more effectively, we developed an adaptive surrogate

modeling-based optimization method called ASMO (Wang

et al., 2014). The major steps of ASMO are as follows:

(1) construct a surrogate model with initial samples, and find

the optimal parameter of the surrogate model. (2) Run the

original model with this optimal parameter and get a new

sample. (3) Add the new sample to the sample set and con-

struct a new surrogate model, and then go back to the 1st step.

The effectiveness and efficiency of ASMO have been vali-

dated in Wang et al. (2014) using 6D Hartman function and a

simple hydrologic model SAC-SMA. As shown in the com-

parison between ASMO and SCE-UA, ASMO is more effi-

cient in that it can converge with less model runs, while SCE-

UA is more effective in that it can get closer to the true global

optimal parameter. So making a choice between ASMO and

SCE-UA is a “cost-benefit” trade-off: if the model is very

cheap to run, SCE-UA is preferred because it is more effec-

tive to find the global optimum; while if the model is very

expensive to run, ASMO is preferred because it can find a

fairly good parameter within a limited number of model runs.

Such parameter set can provide only the approximate global

optimum, but this approach is much cheaper than using tra-

ditional approaches such as SCE-UA.

We carried out multi-objective optimization with ASMO

using weighting functions defined in Eqs. (2), (3) and (4).

The optimization results are shown in Table 5. The RMSEs

of each case were compared with that given by the default pa-

rameterization scheme, and the relative improvements were

calculated. Obviously, for all three cases, all of the six out-

puts were significantly improved except soil temperature. All

three cases sacrificed the performance of soil temperature,

but case 2 (Liu et al., 2005) decreased the least (only 0.78 %),

case 3 (van Griensven and Meixner, 2007) decreased the

most, and the case 1 (weights proportional to NRMSE) is

the moderate one. The results indicated that all three types of

weighting functions can balance the conflicting requirements

of different objectives and effectively give an optimal param-

eter set with ASMO algorithm. In the following studies, we

only involve the moderate case (case 1).

To demonstrate the effectiveness and efficiency of

surrogate-based optimization, we also carried out the di-

rect optimization using SCE-UA. The weighting function
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Figure 4. Optimal value of CoLM given by multi-objective opti-

mization (comparing default parameter, optimal parameter given by

ASMO and SCE-UA).

adopted was Eq. (2), and the optimization results are shown

in Figs. 4 and 5. Figure 4 presents the default parameter, the

optimal parameter given by ASMO and that given by SCE-

UA. Figure 5 shows the improvements given by ASMO and

SCE-UA comparing to the default parameters. From Fig. 5

we find that all of the outputs have improved nearly 10 % ex-

cept soil temperature, and the improvements made by ASMO

are similar to that by SCE-UA. The results indicated that

multi-objective optimization can indeed enhance the perfor-

mance of CoLM using either the ASMO or SCE-UA method.

The ASMO method converged after 11 iterations, namely,

the total number of model runs is 411, while the number

of model runs for SCE-UA is 1000, which is the maximum

model runs set for SCE-UA. Obviously, ASMO is a more

efficient method compared to SCE-UA in this case.

We also used the Taylor diagram (Taylor, 2001) to com-

pare the simulation results for the calibration period and the

validation period (see Figs. 6 and 7). The optimization re-

sults given by SCE-UA and ASMO using Eq. (2) as weight-

ing function are compared against the performance of default

parameterization scheme. Since only 2 years of observation

data for the six output variables are available, we use the

first year’s (2008) data as the warm-up period, the second

year’s (2009) data as calibration period, and then use the pre-

vious year’s (2008) data as the validation period. The missing

records have been removed from the comparison.

As indicated in Fig. 6, the performance of optimized pa-

rameters given by both SCE-UA and ASMO (Case C and
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Table 5. Inter-comparison of different weighting systems.

Case 1 Case 2 Case 3

Flux name Default F =
n∑
i=1

wiNRMSEi F =
n∑
i=1

wi
RMSEi

RMSEi,default
F =

n∑
i=1

SEi
SEi,min

(Units) parameters wi ∝ NRMSEi wi = 1/n

RMSE RMSE improvement RMSE improvement RMSE improvement

Sensible heat (W m−2) 49.1424 44.7400 8.96 % 44.2571 9.94% 43.0176 12.46 %

Latent heat (W m−2) 43.5944 36.8158 15.55 % 36.6070 16.03 % 39.1792 10.13 %

Upward long-wave 19.4317 16.3837 15.69 % 15.8426 18.47 % 16.4160 15.52 %

radiation(W m−2)

Net radiation (W m−2) 42.7769 38.8834 9.10 % 38.7710 9.36 % 39.2156 8.33 %

Soil temperature (K) 2.6584 2.9011 −9.13 % 2.6793 −0.78 % 3.0305 −13.99 %

Soil moisture (kg m−2) 21.1371 18.7408 11.34 % 19.7590 6.52 % 19.5655 7.44 %

0

10

20

30

40

50

60

fsena lfevpa olrg sabvg tss wliq

RM
SE

default

SCE

9.36%

11.55%

11.02%

6.89%

-13.40%

10.49%

W/m2      W/m2          W/m2        W/m2              K          kg/m2

0

10

20

30

40

50

60

fsena lfevpa olrg sabvg tss wliq

RM
SE

default

ASMO

8.96%

15.55%

15.69%

9.10%

-9.13%

11.34%

W/m2      W/m2          W/m2        W/m2            K          kg/m2

(a) (b)

Figure 5. Comparing the improvements given by ASMO and SCE.

D in the Taylor diagram) are better than the default param-

eterization scheme (Case B) except soil temperature. Even

though soil temperature simulation is degraded, the correla-

tion coefficients given by all three cases are higher than 0.9,

indicating that this imperfection will not cause significant in-

consistency in the land surface modeling. In Fig. 7, the per-

formance of the validation period is shown quite similar to

that in the calibration period, indicating that the optimal pa-

rameters are well identified and the over-fitting problem is

avoided.

The four energy fluxes (sensible/latent heat, upward long-

wave radiation, net radiation) and soil surface temperature

have very good performance. However, the performance of

soil moisture seems unsatisfactory. The correlation coeffi-

cient of soil moisture of Case B (default parameter) is less

than 0, while with the help of SCE-UA and ASMO opti-

mization the correlation coefficient is only slightly larger

than 0. The possible reasons might be as follows: (1) the de-

fault soil parameters of CoLM is derived from the soil tex-

ture in the 17-category Food and Agricultural Organization

State Soil Geographic (FAO-STATSGO) soil data set (Ji and

Dai, 2010), which provides the top-layer (30 cm) and bottom-

layer (30–100 cm) global soil textures and has a 30 s resolu-

tion. The resolution and accuracy of this data set may not

be accurate enough in A’rou station, where frequent freezing

and thawing occur. A finer soil database, such as “the Soil

Database of China for Land Surface Modeling” (Shangguan

et al., 2013), or an in situ field survey for soil texture, should

be used to improve the quality of the default parameteriza-

tion scheme; (2) simulating freezing/thawing processes is a

challenging task in land surface modeling, and we still have

insufficient knowledge about the details of the physical pro-

cesses. Parameter optimization can improve the model per-

formance if the model physics are correct, but is helpless if

the model structure is inconsistent with the true underlying

physical processes. Although CoLM’s performance of simu-

lating frozen soil and snow cover has been evaluated in the

experiment in Valdai, Russia (Dai et al., 2003), the situa-

tion of Heihe in China can be very different. For instance,

in CoLM the soil depth is set to 2.86 m globally, but actu-

ally the soil depth varies in different places. Fundamentally

such a simplification may not introduce significant error to

the simulation of energy flux, but it definitely influences the

performance of hydrological processes such as soil moisture.

Further, the altitude of Heihe is much higher than Valdai, and

the influence of human activities is also significantly differ-

ent. All these reasons can potentially influence the perfor-

www.hydrol-earth-syst-sci.net/19/2409/2015/ Hydrol. Earth Syst. Sci., 19, 2409–2425, 2015
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(a) Sensible heat (b) Latent heat (c) Upward longwave radiation

(d) Net radiation (e) Soil temperature (f) Soil moisture

B: Defualt

D: ASMO
C: SCE

A: Observation
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Figure 6. Taylor diagram of simulated fluxes during calibration period (1 January 2009 to 31 December 2009).

(a) Sensible heat (b) Latent heat (c) Upward longwave radiation

(d) Net radiation (e) Soil temperature (f) Soil moisture

B: Defualt

D: ASMO
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Figure 7. Taylor diagram of simulated fluxes during validation period (here we use the warm-up period as validation period, 1 January 2008

to 31 December 2008).

mance of CoLM and cannot be mitigated by parameter opti-

mization.

In the optimization results, five of the outputs were im-

proved but only soil temperature became worse. In multi-

objective optimization, a compromise is necessary. In this

case study, soil temperature requires small P6 and large 36,

which conflict with all other outputs. Consequently, improv-

ing every output is impossible and some outputs might be

sacrificed. If the cost is affordable and the gain is big enough,

such compromise might be worthwhile. In this case study, the

smallest weight was assigned to soil temperature. In the opti-

mal solution, the RMSE of soil temperature increases from

2.66 to 2.90◦C (only 0.24◦C larger), but other outputs in

RMSE can all be improved by about 10 %. We think the sac-
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rifice of soil temperature is worthwhile because a negligible

degradation of one output can lead to a significant improve-

ment of all other outputs.

5 Discussion and conclusions

We have carried out multi-objective parameter optimization

for a LSM (CoLM) at the Heihe river basin. Although there

have been other studies, such as multi-objective calibration

of hydrological models (Gupta et al., 1998; Vrugt et al.,

2003b), LSMs (Gupta et al., 1999), single column land–

atmosphere coupled models (Liu et al., 2005), and soil–

vegetation–atmosphere transfer (SVAT) models (Pollacco et

al., 2013), the novel contribution of this research lies in the

significant reduction of model runs. In previous research, a

typical multi-objective optimization needs∼105–106 or even

more model runs. For large complex dynamic models which

are very expensive to run, parameter optimization is imprac-

tical because of lack of computational resources. In this re-

search, we managed to achieve a multi-objective optimal pa-

rameter set with only 411 model runs. The performance of

the optimal parameter set is similar with the one obtained by

SCE-UA method using more than 1000 model runs. Such a

result indicates that the proposed framework in this paper is

able to provide optimal parameters more efficiently. In future

work, we are going to extend the uncertainty quantification

framework to other large complex dynamic models, such as

regional-scale LSMs, atmospheric models and climate mod-

els. We will look into testing the scalability of the screen-

ing, surrogate modeling and optimization techniques on more

complex models with more adjustable parameters. We will

also investigate the influence of uniformity and stochastic-

ity of initial sampling points, and compare the suitability

of different sampling methods. In addition to examining the

main and total effects of the parameters, we will also eval-

uate the interactions among parameters. We will continue

to improve the effectiveness, efficiency, flexibility and ro-

bustness of GPR approach for surrogate modeling, and test

with more complex models. Since weighting function-based

multi-objective optimization methods are simple, intuitive

and effective, an inter-comparison of different weighting sys-

tems can be an interesting topic worthy of further research.

Further, we intend to investigate ways to identify Pareto opti-

mal parameter sets using a surrogate-based optimization ap-

proach.

Discussion and collaborations are warmly welcomed on

this and ongoing works. The computer code used in this

study is available from the first author, which going to be

published as part of the “UQlab” software package in the fu-

ture.
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Appendix A: Surrogate modeling approaches

A1 Multivariate Adaptive Regression Splines

The MARS model is a kind of flexible regression model of

high-dimensional data (Friedman, 1991). It automatically di-

vided the high-dimensional input space into different parti-

tions with several knots and carries out linear or nonlinear

regression in each partition. It takes the form of an expansion

in product spline basis functions as follows:

y = f (x)= a0+

M∑
m=1

am

Km∏
k=1

[sk,m
(
xv(k,m)− tk,m

)
]+, (A1)

where y is the output variable and x = (x1x2, . . .,xn) is the

n-dimensional input vector; a0 is a constant, am are weight-

ings of each basis functions,m is the index of basis functions

and M is the total number of basis functions; in each basis

function Bm (x)=
Km∏
k=1

[sk,m
(
xv(k,m)− tk,m

)
]+, k is the index

of knots and Km is the total number of knots; sk,m take on

value ±1 and indicate the right/left sense of associated step

function, v(k,m) is the index of the input variable in vector

x, and tk,m indicates the knot location of the kth knot in the

mth basis function.

MARS model is built in two stages: the forward pass and

the backward pass. The forward pass builds an over-fitting

model includes all input variables, while the backward pass

removes the insensitive input variables one at a time. Accord-

ing to statistical learning theory, such a build-prune strategy

can extract information from training data and meanwhile

avoid the influence of noise (Hastie et al., 2009). Because

of its pruning and fitting ability, MARS method can be used

as parameter screening method (Gan et al., 2014; Li et al.,

2013; Shahsavani et al., 2010), and also surrogate modeling

method (Razavi et al., 2012; Song et al., 2012; Zhan et al.,

2013).

A2 Gaussian process regression

Gaussian process regression (GPR) (Rasmussen and

Williams, 2006) is a new machine learning method based on

statistical learning theory and Bayesian theory. It is suitable

for high-dimensional, small-sample nonlinear regression

problems. In the function-space view, a Gaussian process can

be completely specified by its mean function and covariance

function:{
m(x)= E

[
f (x)

]
k
(
x,x′

)
= E[(f (x)−m(x))(f

(
x′
)
−m

(
x′
)
)]
, (A2)

where f (x) is the Gaussian process with n-dimensional in-

put vector x = (x1,x2, . . .,xn),m(x) is its mean function and

k
(
x,x′

)
is its covariance function between two input vectors

x and x′. For short this Gaussian process can be written as

f (x)=GP(m(x) ,k(x,x′)).

Suppose a nonlinear regression model

y = f (x)+ ε, (A3)

where x is the input vector, y is the output variable, and ε is

the independent identically distributed Gaussian noise term

with 0 mean and variance σ 2
n . Suppose y is the training out-

puts; X is the training input matrix in which each column is

an input vector; f ∗ is the test outputs; X∗ is the test input ma-

trix; K(X,X), K(X,X∗) and K(X∗,X∗) denote covariance

matrixes of all pairs of training and test inputs. We can easily

write the joint distribution of training and testing inputs and

outputs as a joint Gaussian distribution:[
y

f ∗

]
∼N

(
0,

[
K(X,X)+ σ 2

n I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
. (A4)

We can derive the mean and variance of predicted outputs

from Bayesian theory. The predictive equations are presented

as follows:

E(f ∗)=K(X∗,X)
[
K(X,X)+ σ 2

n I
]−1

y, (A5)

cov
(
f ∗
)
=K(X∗,X∗)−K(X∗,X)

[
K(X,X)+ σ 2

n I
]−1

K(X,X∗). (A6)

In this example, the output y is centered to 0 so that the mean

function is m(x)= 0, while each element of covariance ma-

trixes equals the covariance function k
(
x,x′

)
of input pairs.

The covariance function is the crucial ingredient of GPR,

as it encodes the prior knowledge about the input–output re-

lationship. There are many kinds of covariance functions to

choose and users can construct special type of cov-function

(covariance function) depending on their prior knowledge. In

this paper, we choose Martérn covariance function:

k (r)=
21−ν

0(ν)

(√
2νr

l

)ν
Kν

(√
2νr

l

)
, (A7)

where r = |x− x′| is the Euclidian distance between input

pair x and x′, Kν(.) is a modified Bessel function, ν and l

are positive hyper-parameters, ν is the shape factor and l is

the scale factor (or characteristic length). The Martérn co-

variance function is an isotopic cov-function in which the

covariance only depends on the distance between x and x′.

The shape scale ν controls the shape of cov-function: a larger

ν leads to a smoother process while a smaller ν leads to a

rougher one. If the shape scale ν→∞we obtain squared ex-

ponential covariance function k (r)= exp (−r2/2l2), which

is also called RBF. The Martérn covariance function becomes

a product of a polynomial and an exponential when ν is half

integer: ν = p+1/2. The most widely used cases are ν = 3/2
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and ν = 5/2, as follows:

kν=3/2 (r)=

(
1+

√
3r

l

)
exp

(
−

√
3r

l
,

)
(A8)

kν=5/2 (r)=

(
1+

√
5r

l
+

5r2

3l2

)
exp

(
−

√
5r

l
.

)
(A9)

In this paper, a value of ν = 5/2 was used.

To adaptively determine the values of hyper-parameters l

and σn, we use maximum marginal likelihood method. Be-

cause of the properties of Gaussian distribution, the log-

marginal likelihood can be easily obtained as follows:

log
[
p(y|X)

]
=−

1

2
yT
(

K+ σ 2
n I
)−1

y−
1

2
log

∣∣∣K+ σ 2
n I

∣∣∣
−
n

2
log 2π, (A10)

where K =K (X,X). In the training process of GPR, we

used the SCE-UA optimization method (Duan et al., 1993)

to find the best l and σn.

A3 Random Forest

Random Forest (Breiman, 2001) is a combination of Classifi-

cation and Regression Trees (CART) (Breiman et al., 1984).

Generally speaking, tree-based methods split the feature

space into a set of rectangles and fit the samples in each rect-

angle with a class label (for classification problems) or a con-

stant value (for regression problems). In this paper only the

regression tree was discussed. Suppose x = (x1,x2, . . .,xn)

is the n-dimensional input feature vector and y is the output

response, the regression tree can be expressed as follows:

f̂ (x)=

M∑
m=1

cmI (x ∈ Rm), (A11)

I (x ∈ Rm)=

{
1, x ∈ Rm
0, x 6∈ Rm,

(A12)

where M is the total number of rectangles, m is the index of

rectangle,Rm is its corresponding region and cm is a constant

value equals to the mean value of y in region Rm. To effec-

tively and efficiently find the best binary partition, a greedy

algorithm is used to determine the feature to split and the lo-

cation of split point. This greedy algorithm can be very fast

especially for a large data set.

Because of the major disadvantages of a single tree, such

as over fitting, lack of smoothness and high variance, many

improved methods have been proposed, such as MARS and

Random Forests. A Random Forest constructs many trees us-

ing randomly selected outputs and features, and synthesizes

the outputs of all the trees to obtain the prediction result. A

Random Forest only has two parameters: the total number

of trees t , and the selected feature number m̂. To construct a

Random Forest one observes the following steps:

1. Bootstrap aggregating (bagging): from total N samples

(xi,yi) i = 1,2, . . .,N , randomly select one point at one

time with replacement, and replicate N times to get a

resample set containing N points. This set is called a

bootstrap replication. We need t bootstrap replications

for each tree.

2. Tree construction: for each splitting of each tree, ran-

domly select m̂ features from the totalM , and select the

best fitting feature among the m̂ to split. The m̂ selected

features should be replaced in every splitting step.

3. The prediction result of a Random Forest is given by

averaging the output of t trees.

f̂rf (x)=

t∑
j=1

f̂j (x) (A13)

Random Forests have outstanding performance for very

high-dimensional problems, such as medical diagnosis and

document retrieval. Such problems usually have hundreds

or thousands of input variables (features), but each feature

provides only a little information. A single classification or

regression model usually has very poor skill that is only

slightly better than random prediction. However, by combin-

ing many trees trained with random features, a Random For-

est can give improved accuracy. For big-data problems that

have more than 100 input features and more than one million

training samples, Random Forests become the only choice

because of its outstanding efficiency and effectiveness.

A4 Support vector machine

A support vector machine is an appealing machine learning

method for classification and regression problems depending

on the statistical learning theory (Vapnik, 1998, 2002). The

SVM method can avoid the over-fitting problem because it

employs the structural risk minimization principle. It is also

efficient for big data because of its scarcity. A brief introduc-

tion to support vector (SV) regression is presented below.

The aim of SVM is to find a function f (x) that can fit

the output y with minimum risk given a N point training set

(xi,yi) i = 1,2, . . .,N . Take a simple linear regression model

for example, the function f (x) can be

f (x)= wT x+ b, (A14)

where w is the weighting vector and x is the n-dimensional

input feature vector. This function is actually determined by

a small subset of training samples called support vectors

(SVs).

Nonlinear problems can be transferred to linear problems

by applying a nonlinear mapping from low-dimensional in-

put space to some high-dimensional feature space:

f (x)= wT φ (x)+ b, (A15)
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where φ (x) is the mapping function. The inner product of the

mapping function is called the kernel function: K
(
x,x′

)
=

φ(x)T φ
(
x′
)

and this method is called kernel method. The

commonly used kernel functions are linear kernel function,

polynomial, sigmoid and the RBF. In this paper we use RBF

kernel:

K
(
x,x′

)
= exp(−γ

∣∣x− x′∣∣2), (A16)

where
∣∣x− x′∣∣ is the Euclidian distance between x and x′,

and γ is a user defined parameter that controls the smooth-

ness of f (x).

To qualify the “risk” of function f (x), a loss function is

defined as follows:

|y− f (x) |ε =

{
0, if |y− f (x) | ≤ ε

|y− f (x)| − ε, otherwise
. (A17)

The loss function means regression errors less than tolerance

ε are not penalized. The penalty-free zone is also called ε-

tube or ε-boundary. As explained in statistical learning the-

ory (Vapnik, 1998), the innovative loss function is the key

point that SVM can balance empirical risk (risk of large error

in the training set) and structure risk (risk of an over-complex

model, or over fitting). The problem of simultaneously min-

imizing both empirical risk (represented by regression error)

and structure risk (represented by the width of ε-tube) can be

written as a quadratic optimization problem:

min
w,b,ξ,ξ∗

1

2
wTw+C

n∑
i=1

ξi +C

n∑
i=1

ξ∗i

subject towT φ (xi)+ b− yi ≤ ε+ ξi

yi −w
T φ (xi)− b ≤ ε+ ξ

∗

i

ξi,ξ
∗

i ≥ 0, i = 1,2, . . .,n. (A18)

The problem can be transferred to the dual problem:

min
w,b,ξ,ξ∗

1

2

(
α−α∗

)T
K
(
α−α∗

)
+ ε

n∑
i=1

(αi +α
∗

i )+

n∑
i=1

yi(αi −α
∗

i )

subject toeT
(
α−α∗

)
= 0

yi −w
T φ (xi)− b ≤ ε+ ξ

∗

i

0≤ αi,α
∗

i ≤ C,i = 1,2, . . .,n, (A19)

where K is the kernel function matrix with Kij =K(xi,xj ).

Solving the dual problem and we can get the predictive func-

tion:

f(x)=

n∑
i=1

(
−αi +α

∗

i

)
K(xi,x)+ b, (A20)

where the vectors (α∗−α) are the SVs.

A5 Artificial neural network

Artificial neural network (Jain et al., 1996) is time-honored

machine learning method comparing to the former four. It is

a data-driven process that can solve complex nonlinear rela-

tionships between input and output data. A neural network

is constructed by many interconnected neurons. Each neuron

can be mathematically described as a linear weighing func-

tion and a nonlinear activation function:

Ii =

n∑
j=1

wijxj , (A21)

fi (I )=
1

1+ exp(−Ii)
, (A22)

where xj is the j th input variable, wij is the weight and Ii
is the weighted sum of the ith neuron. The output of the ith

neuron fi (I ) is given by the nonlinear activation function of

the weighted sum input. Here we use Sigmoid function.

Minsky and Papert (1969) showed that single layer neural

network can only solve linear problems. Cybenko (1989) ex-

tended ANN to multiple layers and demonstrated that multi-

layer ANN can infinitely approximate any nonlinear function

(the universal approximation theorem). The training proce-

dure of ANN is optimizing the value of weights. There are

many training methods for ANN and we use the Levenberg–

Marquardt (LM) (Marquardt, 1963) algorithm, a modifica-

tion of the classic Newton algorithm provided in the Matlab

ANN toolbox.
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