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Abstract A global sensitivity analysis method was used to identify the parameters of theWeather Research
and Forecasting (WRF) model that exert the most influence on precipitation forecasting. Twenty-three
adjustable parameters were selected from seven physical components of the WRF model. The sensitivity
was evaluated based on skill scores calculated over nine 5 day precipitation forecasts during the summer
seasons from 2008 to 2010 in the Greater Beijing Area in China. We found that eight parameters are more
sensitive than others. Storm type seems to have no impact on the list of sensitive parameters but does
influence the degree of sensitivity. We also examined the physical interpretation of parameter sensitivity. This
analysis is useful for further optimization of the WRF model parameters to improve precipitation forecasting.

1. Introduction

Mesoscale numerical weather prediction models have become indispensible tools for predicting regional
weather events, especially the extreme events. Over recent years, significant advancements have been
achieved with better dynamical representations of the atmospheric system, higher spatiotemporal
resolutions, and longer forecasting lead times [Tripoli and Cotton, 1982; Dudhia, 1993; Janjic, 1994; Grell et al.,
1995] but also in more advanced analysis methodologies such as data assimilation andmodel output analysis
methods [Evensen, 1997; Kalnay, 2003; Rabier, 2005; Wang et al., 2008]. The emergence of the Weather
Research and Forecasting (WRF) model in the last 15 years symbolized a new era in mesoscale model
development, as it is designed with a modular structure which allows easy integration of model parts
developed by different groups [Dudhia, 2014].

The ability of the WRF model to simulate or predict weather events depends on three factors. The first factor
is the realism of model physics representation. WRF, a fully compressible nonhydrostatic model with
governing equations established based on physical laws, is solved on a gridded domain with spatial
resolutions ranging hundreds of meters to tens of kilometers. Even with today’s powerful supercomputers, it
is impossible to represent many physical processes explicitly and parameterization schemes are therefore
used. WRF offers a myriad of state-of-the-art physical parameterization schemes [Skamarock et al., 2008].
Many studies have investigated the suitability of different schemes for simulating different physical processes
[Ruiz et al., 2007; Gilliam and Pleim, 2010; Kim et al., 2011; Nasrollahi et al., 2012; Liang et al., 2012].

The second factor affecting WRF model performance is the specification of the initial and lateral boundary
conditions. WRF has a built-in data assimilation component with alternative schemes available, including
three- and four-dimensional variational data assimilations (3DVAR/4DVAR), Ensemble Transformed
Kalman Filter (ETKF), and hybrid ETKF-3DVAR [Wang et al., 2008; Huang et al., 2009]. The data assimilation
system allows WRF to ingest a vast array of observational data from diverse sources to improve the
representation of initial and boundary conditions and plays a critical role in enhancing model forecasting
[Xiao and Sun, 2007; Liu et al., 2013].

The third factor impactingWRFmodel performance is the specification of model parameters. The WRFmodel
contains many input parameters (i.e., constants and exponents in model equations), with some of them
listed in a “namelist” file, and others hard coded in different parameterization schemes inside the computer
code. The default values for them are generally assigned based on theoretical or empirical considerations
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by scheme developers. Some parameters may have been loosely calibrated on a limited trial-and-error basis
[Hong et al., 2004]. How model parameters are specified has great impact on simulation of different physical
processes [Hou et al., 2012; Yang et al., 2012]. Many researchers experimented with different parameter
specifications to understand how they affect the simulation of a particular process. For example, Bernardet
et al. [2000] found that good representation of topographical features, soil moisture distribution over the
land, and dynamic initialization of clouds have substantial impact on how convective storm events are
simulated. However, those “ad hoc” efforts to understand parametric uncertainty tend to focus on a particular
scheme and are nonsystematic.

More recently, efficient and robust system-mathematical approach to parametric uncertainty analysis have
become popular, which usually involves two steps: (1) identifying the parameters that have the most
influence on model output and (2) tuning these parameters so model performance is optimized. Sensitivity
analysis (SA) is a commonly used approach to identify the most important parameters in a model
[Saltelli et al., 2004]. There are numerous SA studies on parameters of land surface models [Liu et al., 2004;
Bastidas et al., 2006; Hou et al., 2012; Li et al., 2013]. More recently, the weather and climate modeling
community is also exploring parametric uncertainty using SAmethods [Bellprat et al., 2012; Johannesson et al.,
2014]. Numerous studies have examined WRF parametric uncertainty with respect to precipitation
forecasting [Hong et al., 2006; Xiong et al., 2010; Yang et al., 2012]. However, these studies were usually
focused on parameters from a particular scheme. There is no comprehensive analysis of parametric
uncertainty of all WRF physical schemes.

Our work intends to systematically analyze the sensitivity of all parameters that may affect precipitation
forecasting in the WRF model. Our paper is organized as follows. Section 2 presents the methodology.
Section 3 describes the experimental design and data used. Section 4 provides the results and discussion.
Section 5 presents conclusions.

2. Methodology

There are several major steps involved in SA: (1) model and parameter selection; (2) determination of
parameter uncertainty range and distribution; and (3) selection of a SA method to assess parameter
sensitivity. Since our goal is to identify the most sensitive WRF model parameters for simulating precipitation,
we started with selecting all parameters that may exert influence on precipitation simulation. Then we
determined their uncertainty ranges and distributions by examining the physical meanings and also by
consulting the WRF experts (e.g., planetary boundary layer (PBL): Songyou Hong, rapid radiative transfer
model (RRTM): Eli J. Mlawer, WRF Single-Moment 6-Class Microphysics Scheme (WSM6): Jimy Dudhia).
Next we chose a SA method and performed SA on the selected parameters. Section 3 presents the details on
the selection of parameters, uncertainty ranges, and distributions. Here a brief description of the SA method
is given.

We choose the Morris one-at-a-time (MOAT) method as the SA method for identifying the most sensitive
parameters [Morris, 1991; Tong, 2005]. The MOAT method varies the value of one input variable at a time,
with the other input variables remaining unchanged. It is regarded as a global sensitivity analysis
method because a MOAT path spans a large portion of the input space, and the repetition of the MOAT
procedure adds sampling uniformity in input space. The specific sampling procedure is as follows:

Considering one model with m-dimensional inputs X= (x1, x2 , …, xm), the ranges of each input xi(i=1,2,…,m)
are normalized to [0,1]. For a given initial sample X0 = (x1

0, x2
0, …, xm

0), each element of which is randomly
selected from the set {0,1/(p� 1), 2/(p� 1),…,1},where p is a preselected integer level (set to 4 in this study). We
first randomly select the jth variable for perturbation, i.e., X1 = (x1

0, …, xj
0+ Δ j,…, xm

0) and then compute the
gradient of the jth variable, dj :

d 1ð Þ
j ¼

f x01;…; x0j þ Δ j;…; x0m
� �

� f x0
1
;…; x0

j
;…; x0

m

� �
Δj

; (1)

where f is the cost function measuring the closeness of model simulation and observation. Δj is a
preselected multiple of 1/(p� 1) with a positive or a negative sign, depending on the direction of the
perturbation. Then, we randomly select the second variable xk (k≠ j ). We perturb xk

0 in X1 by Δk, and obtain
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X2 = (x1
0, …, xj

0+ Δj,…, xk
0+ Δk,…, xm

0).
The gradient value d 1ð Þ

k from X1 to X2 is
computed according to equation (1).
This process is completed when all input
variables are selected exactly once. Over
a complete MOAT path, there are m+1
sampling points and m gradient
values, D(1) = (d1

(1), d2
(1), …, dm

(1)).
Assuming that this procedure is
repeated r times randomly, we have
(m + 1) × r sampling points in input
space and r gradient values for each
variable, i.e., D = (D(1), D(2), …., D(r)).
The following Morris measures
[Campolongo et al., 2007] can
be computed:

uj ¼
Xr
i¼1

dj
ið Þ

��� ���=r and σj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXr
i¼1

dj
ið Þ �

Xr
i¼1

dj
ið Þ=r

 !2
=r

vuut ; j ¼ 1; 2;…;m (2)

where uj is the mean of |dj(i)| and σj is the standard deviation of dj for the jth input variable. A large uj indicates
that xj has the most influence on the output, whereas a large σj indicates that xj has a strong nonlinear
interaction with other input variables on the output. The MOAT method can identify sensitive parameters
from insensitive parameters with a relatively small sample size [Herman et al., 2013]. This is the reason
we used it for studying the parametric uncertainty of the WRF model.

3. Experimental Design
3.1. WRF Model Configuration and Adjustable Parameters

The Advanced Research Weather Research and Forecasting model Version 3.3 (WRF-ARW Version 3.3,
http://www.mmm.ucar.edu/wrf/users/) is used in this study. The study area is a two-grid horizontally nested
domain with North China represented by the outer grids (i.e., d01 area in Figure 1) and the Greater Beijing Area
(~24,300 km2) by the inner grids (i.e., d02 area in Figure 1). The outer grids are composed of 87×55 grid cells
with a spatial resolution of 27 km, and the inner grids are made of 60×45 grid cells with a spatial resolution of
9 km. The vertical profile is represented by 38 sigma vertical levels from the land surface to 50hPa level in
the atmosphere. The uniform time step is 60 s. Meteorological data including wind, temperature, water vapor,
pressure, and land surface state variables from the National Center for Environmental Prediction (NCEP)
Reanalysis data, available at 1° × 1° horizontal resolution and 6 h interval, are used to generate the initial and
lateral boundary conditions. In this study, we focus on the evaluation of the impact of parametric uncertainty on
the 5 day precipitation forecasts over the Greater Beijing Area during the summer from 2008 to 2010.

The choice of the physical parameterization schemes follows the operational setup by Beijing Meteorological
Bureau. TheMonin-Obukhov scheme [Dudhia et al., 2003] is adopted for surface layer parameterization. Cumulus
and microphysics parameterizations adopt the Kain-Fritsch Eta scheme [Kain, 2004] and the WSM 6-class
Graupel scheme [Hong and Lim, 2006], respectively. The RRTM scheme [Mlawer et al., 1997] and the Dudhia
scheme [Dudhia, 1989] are chosen as long wave radiation and short wave radiation schemes. The unified Noah
land surface model scheme [Chen and Dudhia, 2001] and the Yonsei University (YSU) scheme [Hong and Lim,
2006] are chosen as land surface and the planetary boundary layer schemes.

We identified 23 adjustable parameters from all seven parameterization schemes that may have influence on
precipitation forecasting. Note that it is highly possible that this list is incomplete, and other potentially
important parameters may have beenmissed. The physical meanings and the ranges of these parameters are
presented as Table S1 in the supporting information. The parameters and their ranges for cumulus
schemes are determined based on literature [Yang et al., 2012]. The parameters of the land surface scheme
are based on parameter SA results for the community/common land model [Hou et al., 2012; Li et al., 2013]

Figure 1. The two-grid horizontally nested domain with d01 being the
outer grids and d02 being inner grids encompassing the Greater
Beijing Area.
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and for the WRF model [Xiong et al., 2010]. The default values of the four adjustable parameters for the
land surface scheme are specified according to the lookup tables based on the 17-category soil data set
(Food and Agriculture Organization-State Soil Geographic). The values of these parameters are changed via
multipliers applied to them, so they would change by the same relative amount across all grids. The
parameters and their ranges of the YSU planetary boundary layer scheme are determined based on
discussion with the YSU scheme developers (S.Y. Hong, personal communication, 2013). Parameters of other
physical schemes are determined according to literature, expert discussion, and a careful examination of
related program codes (e.g., surface layer scheme: Zhang and Anthes [1982] and Stensrud [2007, pp. 160–161];
microphysics scheme: [Hong et al., 2006]; short wave radiation scheme: WRF3.3 user guide, p. 5–54 and
Stephens [1984]; long wave radiation scheme: [Sheng et al., 2003, pp. 104–105]).

3.2. The Precipitation Events and Observation Data Sets Used in the Study

We considered nine storm events (marked as events (a)–(i) in Figure 2) over summers from 2008 to 2010 in
the Greater Beijing Area. Each event spans 5 days and contains the maximum daily rainfall event in each
month. A complete WRF simulation of nine storm events consumes approximately 180 CPU hours.

The validation data are obtained from Beijing Normal University gridded precipitation data set [Huang et al.,
2014]. The gridded precipitation data are available at 3 h interval with a spatial resolution of 0.05° × 0.05°.
The cost function or performance measure is the mean absolute error (MAE) of daily rainfall simulation over
the d02 domain:

MAE ¼
PT

t¼1

PN
i¼1 simt

i � obsti
�� ��

N� T
; (3)

wheresimt
i andobs

t
i are simulated and observed daily precipitation at grid i and time t, N is the number of grid

cells in domain d02, and T is the total number of days. The choice of performance measures is important
when validating model performance [Zepeda-Arce et al., 2000; Ebert and McBride, 2000]. Since this paper
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Figure 2. Daily precipitation of the Great Beijing Area for summer seasons from 2008 to 2010. Nine 5 day storms framed by
the black boxes are indexed from (a) to (i).
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focuses on assessing the variation in model output due to different parameters, not on comparing model
output and observation, MAE is a sufficient performance measure.

3.3. Experimental Setup for Sensitivity Analysis

We used the MOAT method to conduct SA, available from a software package named Problem Solving
environment for Uncertainty Analysis and Design Exploration (PSUADE) [Tong, 2005]. PSUADE integrates
many methods for uncertainty quantification, including a vast array of sampling, sensitivity analysis,
surrogate model construction, and optimization methods. It has been successfully used in numerous studies
[Tong and Graziani, 2008; Li et al., 2013; Gan et al., 2014].

Based on our previous experience with the MOAT method and literature [Li et al., 2013; Gan et al., 2014;
Morris, 1991], we choose 10 MOAT replications to compute sensitivity indices. The total number of
WRF simulations (i.e., parameter samples) is equal to 10 × (23 + 1) = 240, resulting in approximately
180 × 240 = 43,200 CPU hours to complete the analysis.

4. Results and Discussion
4.1. The Parameter Sensitivity Results Based on Lead Times

Using the experimental setup described before, we ran the WRF model using 240 randomly generated
parameter sets based on the MOAT design. We then computed the MOAT indices for all storm events based
on different lead times. Figures 3a–3e display the results for day 1 to day 5, while Figure 3f shows the result for
all lead times considered together. In the figure, the larger the MOAT mean (horizontal axis), the more
sensitive the parameter is. The MOAT standard deviation (vertical axis) is a reflection of nonlinear interaction
among parameters, with the larger values implying higher interaction. The most sensitive parameters for
day 1 are P3, P4, P5, P16, and P21. For days 2 and 3, many of the most sensitive parameters are in common
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Figure 3. The MOAT sensitivity plots for different lead times: (a)–(e) Lead time from day 1 to day 5, respectively and (f) for
all storms.
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with day 1 except for P5 in day 2 and P4 in day 3. For days 4 and 5, the most sensitive parameters are the
same, except for P10, which appears only in day 5. When all lead times are considered together, the
eight most sensitive parameters are basically the same as those identified based on individual lead times.
Although there is some difference in the list of top sensitivity parameters, the sensitivity results seem to be
independent of lead times.

4.2. The Parameter Sensitivity Results for Individual Storms and Different Storm Type

It is reasonable to hypothesize that the sensitivity of WRF model parameters is related to storm type. For
example, some parameters may play a more prominent role in convective storms while others may have
more influence on nonconvective storms. To test this hypothesis, we classify the nine storms into three
categories according to the weight of simulated convective rainfall amount. A storm is classified as follows:
(1) a convective storm if the simulated convective rainfall amount is >60%; (2) a nonconvective storm if
the simulated convective rainfall is <40%; and (3) a mixed storm otherwise. Based on this rule, events (a), (c),
(e), (f ), and (g) (with 96%, 71%, 82%, 69%, and 91% convective rainfall, respectively) are regarded as
convective, while events (b), (h), (i) (with 39%, 30%, and 37% convective rainfall) are nonconvective. Event
(d) (with 49% convective rainfall) is a mixed storm.

For each storm type and individual storms, we computed the MOAT indices, which are exhibited in Figure 4.
In order to gain insight into the relative parameter sensitivity, the MOAT mean values of all 23 parameters
are normalized to [0, 1]. The sensitivity score for the most sensitive parameters is 1 (i.e., the darkest color),
and 0 for the least sensitive (i.e., white).

For convective storms, the most sensitive parameters are P3, P4, P5, P8, P12, P16, and P21. For nonconvective
storms, the most sensitive parameters are P4, P10, P12, P16, and P21. We note that the two storm types
have many common sensitive parameters (e.g., P4, P12, P16, and P21). The combined list of parameters for
the two storm type agrees with the most sensitive parameter list for all events and the list for the mixed
storm. The difference among them is in the sensitivity ranks. For example, P3, P4, and P5, which belong to the
cumulus scheme, are more sensitive in convective storms than in nonconvective storms. P12 (from
shortwave scheme), P16 (from land surface scheme), and P21 (from planetary boundary layer scheme) are
sensitive in almost all events. The sensitivity indices for individual storms tend to have more variation
compared to that of their corresponding storm type, suggesting that sensitivity analysis results done with
many storms are more robust than that with a single storm.

We also conducted an additional experiment to see if different initial and boundary conditions would change
parameter sensitivities. Using the Climate Forecast System Reanalysis (CFSR) data set instead of the NCEP
Reanalysis data set to initialize the WRF model, we performed SA for the 23 parameters using the MOAT
method for the mixed storm event (i.e., event (d)). We found no difference in the list of sensitive parameters,
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Figure 4. The normalized MOAT means for different storms, with 1 implying the most sensitive and 0 the least
sensitive parameters.
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even though the ranks do differ somewhat (see Figure S1 in supporting information), suggesting that
parameter sensitivity is not dependent on how WRF is initialized.

4.3. The Physical Interpretation and Verification of the Parameter Sensitivity Results

Parameter P21, the profile shape exponent for calculating the momentum diffusivity coefficient in the
planetary boundary layer (PBL), is one of the top-ranked sensitive parameters for precipitation simulation as it
controls the mixing intensity of turbulent eddies in PBL and directly affect the development of convection.
The sensitivity of P21 is confirmed by Aksoy et al. when they included it as part of parameter estimation
[Aksoy et al., 2006]. Parameter P12, related to scattering in the clear sky from the short wave radiation
scheme, also appears consistently as one of the top-ranked sensitive parameters as it directly influences the
amount of simulated solar radiation reaching the ground, thus affects the amount of water vapor evaporated
from the surface, and ultimately influences precipitation amount. This parameter must be tuned to
compensate for the scheme not explicitly accounting for stratospheric ozone absorption [Zamora et al.,
2005]. Two of the most sensitive parameters, P3 and P4 in the cumulus scheme, are related to downdraft
and entrainment mass flux rates. Their inclusion is justified for the following reasons. A large value for P3
implies a large downdraft, which results in more evaporation from condensed water and consequently less
precipitation. A large value for P4 indicates a strong entrainment rate, which dilutes the moist convective
core, suppresses the updraft mass flux, and leads to less convective precipitation [Kain and Fritsch, 1990; Kain,
2004; Yang et al., 2012]. Another sensitive parameter P5 from the cumulus scheme, the downdraft starting height,
has a similar effect on convection process as P3 because a downdraft flux initiating at a higher level would
produce a tall and narrow downdraft to limit the development of convective precipitation. Two other parameters
on themost sensitive parameter list, P8 and P10 frommicrophysics scheme, are the coefficient for solving the ice
crystal fall velocity and the limited maximum value for the cloud ice diameter, respectively. Those two
parameters, whose importance to precipitation is confirmed by Jiang et al. [2010], control the accretion amount
from cloud ice to rain water. Soil porosity, P16 from the land surface scheme, is a sensitive parameter for
precipitation simulation as it directly controls the transmission of water and heat fluxes in the soil, and the
exchange of water vapor and heat between land surface and atmosphere [Chen and Dudhia, 2001].

To further verify if those results are reasonable, we computed parameter sensitivities using the traditional SA
method, which works as follows: (1) perturb a specific parameter from its lower bound to upper bound with
other parameters unchanged, (2) compute the change in MAE. The larger the change in MAE, the more
sensitive is the parameter. Compared to the MOAT results, the parameter sensitivity ranks of traditional SA
method is generally consistent, but some ranks are different (e.g., P4 and P16 are ranked 5 and 6 in MOAT,
but 9 and 11 in traditional method, see Figure S2 in the supporting information). This result is reasonable
because the difference in ranks can be explained by sampling error of the analysis methods. Our previous
study has shown that traditional local SA method is more susceptible to sampling error than the MOAT
method [Li et al., 2013]. Figure S3 in the supporting information shows the difference in mean daily
rainfall over the nine 5 day forecasting period when selected parameters are perturbed from their lower
bounds to upper bounds. The fact that the difference in rainfall due to perturbation of P4 and P16 is
significant supports the argument that MOAT results are more reasonable than the traditional SA method.

5. Conclusions

In this study, we examined 23 WRF model parameters thought to have influence over precipitation
amount and identified a subset of them as more sensitive than others for precipitation forecasting by
using the MOAT method. The sensitivity was evaluated based on skill scores calculated over nine 5 day
precipitation forecasts during summer from 2008 to 2010 in the Greater Beijing Area in North China. Two
hundred forty randomly generated parameter sets based on the MOAT design were used to calculate
parameter sensitivity. For convective storms, the most sensitive parameters are P3, P4, P5, P8, P12, P16,
and P21. For nonconvective storms, the most sensitive parameters are P4, P10, P12, P16, and P21. These
parameters come from physical schemes including microphysics, cumulus cloud, planetary boundary layer,
land surface, and short wave radiation. The list of sensitive parameters is not dependent on storm type,
but the sensitivity ranks do vary between storms, reflecting the fact that different storm-generating
mechanisms dominate for different storm type. We examined the physical interpretations of the parameters
on the most sensitive list and explained how these parameters influence precipitation simulation.
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Parameter sensitivity is generally dependent on local conditions. Therefore, the results in the Greater Beijing
Area may not hold true for other areas, especially those areas whose storm-generating mechanisms are
different. To improve precipitation forecasting, we need to not only know what parameters are important
but also know their optimal values. Our future work will focus on the optimization of WRF model parameters
that are deemed sensitive.
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